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Abstract: SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide
substitutions leading to amino acid replacements constitute the primary material for natural selection.
Insertions, deletions, and substitutions appear to be critical for coronavirus’s macro- and microevolu-
tion. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions,
loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagen-
esis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with
repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the
APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including
the context features of RNAs that are likely to be involved in the generation of recurrent mutations.
We also discuss the interplay between mutations and natural selection as a complex evolutionary
trend. The substantial variability and complexity of pipelines for the reconstruction of mutations
and the huge number of genomic sequences are major problems for the analyses of mutations in the
SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of
predicted mutations, which needs to be updated on a regular basis.

Keywords: SARS-CoV-2; epistasis; mutation hotspots; ADAR; APOBEC; oxidative stress; viral fitness;
low-complexity regions

1. Introduction

Mutations are generally classified as induced (caused by exposure to exogenous muta-
genic factors) or spontaneous (occurring in the absence of such an exposure). Mutagenesis
in vivo is a complex multi-step process involving DNA/RNA molecules and enzymes
involved in DNA/RNA precursor metabolism, DNA/RNA replication, recombination, and
repair [1–3]. The process of mutation is an essential and fundamental evolutionary factor,
which creates genetic variation. Spontaneous mutagenesis is a result of inaccuracies in the
replication of genomic material [4]. The factors that determine mutation rate and specificity
are now more amenable to analysis as more data on mutation distributions (mutation
spectra) become available [5]. A mutation spectrum is a distribution of frequencies of
mutations along the nucleotide sequence of a reference genome (for example, and relevant
to this work, SARS-CoV-2 Wuhan-Hu-1, GenBank ID NC_045512). The most frequently
used source of these data is computational reconstructions of mutations in sets of aligned
sequences [6–10]. Another source of mutational spectra is experimental test systems. A
good example of this is a delineated set of recurrent deletions acquired in the N-terminal
domain of the SARS-CoV-2 spike glycoprotein, which alter defined antibody epitopes
during long-term infections in cancer patients [11].
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In this paper, we discuss deletions, insertions, and substitutions in the SARS-CoV-2
genome. We describe various approaches to mutation spectra analysis, including the con-
text features of RNA that give rise to mutation “hotspots”. This pattern is different from
those of influenza B RNA viruses, whose evolution is primarily driven by reassortments
and insertions–deletions [12,13]. Of note, writing a review paper on this topic is a very
challenging task, primarily because of the overwhelming number of SARS-CoV-2-related
papers that have been published. For instance, the PubMed database indexed approx-
imately 4700 relevant papers published in just 3 months between 1 January 2020 and
12 April 2020 [14].

2. Results
2.1. SARS-CoV-2 Genome Structure and Replication

The SARS-CoV-2 genome is a positive-sense single-stranded RNA molecule, about
30 kb in length, with the typical gene organization of coronaviruses [15,16]. There are a
dozen functional or putatively functional ORFs that encode over 25 proteins, including
16 non-structural proteins (NSP1 to NSP16), four structural proteins (M, N, S, and E), and
several accessory proteins, including ORF3a, ORF3b, ORF6, ORF7a, ORF7b, and ORF8
(Figure 1). Accessory proteins are not essential for replication in cell culture. However, they
may play regulatory roles during the viral cycle in the host cells and, thus, contribute to
the virus’s fitness by increasing its ability to modify the host’s immune response [17,18].
Coronaviruses usually differ in which of these accessory proteins they possess, and more
infective species often have specific virulent features associated with these proteins [19].
A recent study suggested that the coding capacity of SARS-CoV-2 is likely to have been
underestimated. A high-resolution map of protein-coding regions in the SARS-CoV-2
genome revealed 23 previously unannotated viral ORFs [20]. The exact number of func-
tional ORFs in the SARS-CoV-2 genome is being debated, as can be exemplified by ORF10,
the functionality of whose protein product has been questioned [21].
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Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis be-
cause the rate of mutations increases from ~10−6/bases per infection cycle to ~10−5/bases per 
infection cycle [23]. 

Viruses in the family Coronaviridae (order Nidovirales) replicate through the transcrip-
tion of negative-sense RNA intermediates that serve as templates for positive-sense ge-
nomic RNA, and an array of sub-genomic RNAs that are generated from discontinuous 
transcription during the synthesis of negative-strand RNA. Template switching occurs at 
transcription-regulating sequences (TRSs) located at the 5′ UTRs of the leader sequences 
and the TRSs located upstream of various genes in the distal third of the genome [24–26]. 
This process produces sub-genomic RNAs that contain a 5′ UTR leader sequence (labeled 
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Figure 1. Structure of the SARS-CoV-2 genome. The 5′-cap, UTR sequences, leader sequences (LSs),
poly-A tail, and standard names of ORFs are shown. M, N, S, and E are structural proteins.

Recurrent replication is an essential step in the viral lifestyle. The RNA-dependent RNA
polymerase (NSP12) of the SARS-CoV-2 virus is error prone, with many errors being corrected
by the proofreading activity of the 3′-to-5′ exoribonuclease (NSP14) [17,18,22]. Coronaviruses
lacking exoribonuclease activity are susceptible to lethal mutagenesis because the rate of
mutations increases from ~10−6/bases per infection cycle to ~10−5/bases per infection
cycle [23].

Viruses in the family Coronaviridae (order Nidovirales) replicate through the transcrip-
tion of negative-sense RNA intermediates that serve as templates for positive-sense ge-
nomic RNA, and an array of sub-genomic RNAs that are generated from discontinuous
transcription during the synthesis of negative-strand RNA. Template switching occurs at
transcription-regulating sequences (TRSs) located at the 5′ UTRs of the leader sequences
and the TRSs located upstream of various genes in the distal third of the genome [24–26].
This process produces sub-genomic RNAs that contain a 5′ UTR leader sequence (labeled
LS in Figure 1), which are fused to the sequence derived from one of the downstream genes.
It is highly likely that a high abundance of sub-genomic RNAs at the 5′ and 3′ ends of the
viral genome creates various biases in the distributions and frequencies of mutations across
the genomic sequence.
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2.2. Reconstructions and Analyses of Mutation Spectra: Methodological Approaches

As mentioned above, important sources of mutation spectra are computational recon-
structions of mutations using variability data across sets of the aligned-to-the-reference
SARS-CoV-2 sequences. However, sequencing errors in low-quality sequences and errors
in bioinformatics pipelines can potentially produce high rates of false positives. Thus,
the quality of sequencing is a very important issue. The vast majority of sequences used
in this study were obtained using nanopore technology, which is not always accurate in
regions with low coverage. Because many closely related sequences are produced by the
same sequencing center, this tendency is likely to cause systemic biases. While all current
analysis pipelines are designed to eliminate spurious mutations [7], the sheer number of
sequenced SARS-CoV-2 genomes (see, for example, the Nextstrain system [27]) makes
this task extremely challenging. An example of a phylogenetic tree reconstructed by the
Nextstrain online system for a limited number of sequences (usually less than 4000) is
shown in the Figure 2.
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been used to reconstruct the tree by Nextstrain. Different colors on the phylogenetic tree correspond
to names of SARS-CoV-2 strains shown at the upper left panel.

There are two main approaches to delineate viral mutations. The simplest one is to
count the mutations at a given position on a SARS-CoV-2 sequence alignment and assume
that they emerged only once [28,29]. A heuristic threshold for the minimum number of
mutations to be observed at a given position is set by the researcher. The obvious pitfall of
this approach is frequently missing recurrent mutations, reversals (backward mutations),
and indels (insertions and deletions). However, the approach is useful for analyses of long
insertions and deletions [28,30,31]. A substantially more sophisticated approach for the
prediction of mutations is based on phylogenetic inferences [7] and allows detection of
recurrent mutations and reversals. Some positions/regions (called mutational hotspots)
have a high frequency of recurrent mutations, suggesting that they may be under episodic
positive selection [9].

Phylogenetic trees (i.e., Figure 2) can be inferred using various methods, yet all of
them have certain limitations. As an example, the least squares distance and maximum
parsimony approaches to predicting deletions in over 600 thousand SARS-CoV-2 genomes
produced many false positive hits [30]. Inaccuracies of phylogenetic reconstructions and
the difficulty of predicating the ancestral sequences that are used to infer mutations are well
known [32,33]. Maximum likelihood estimation techniques and Bayesian approaches for
tree reconstructions and the prediction of ancestral sequences usually tend to produce better
results than those based on parsimony and distances [6–10,27]. However, the sample sizes
for such inferences should be reasonably small because the phylogenetic models used are
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highly complex. The pipelines for mutation reconstructions rely on numerous assumptions.
In a recent paper [7], the authors used a pre-built clade-annotated UShER (Ultrafast Sample
placement on Existing tRee [34]) mutation-annotated tree from the UCSC website and
matUtils [35] to place a subset of the mutation-annotated trees on the samples from each
Nextstrain clade (Figure 2) and then to extract the mutations for each branch [7]. Next,
they tallied the counts for each mutation on all the branches for a given clade, manually
excluding sites that are likely to be prone to errors due to abnormally large numbers of
mutations [7]. This step was necessary considering that many recurrent mutations in the
reported SARS-CoV-2 genome sequences have been observed predominantly or exclusively
by single labs; moreover, they co-localize with annealing sites for the commonly used
primers and are more likely to affect the protein-coding sequences than other similarly
recurrent mutations [33].

The analytical approaches presented above are instrumental in understanding the role
of mutational hotspots, prediction of recurrent mutations, and context analysis [6–8,36].
Statistical analysis of the mechanisms of mutations and selection is an important part of
SARS-CoV-2 studies. The simplest approach to studying mutational spectra is to analyze
the frequencies of substitutions. An example of such an analysis is shown in Figure 3.
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The analysis of distributions of mutations and frameshift and non-frameshift deletions
or insertions across the SARS-CoV-2 genome is another useful tool for analyses. An example
of a distribution of substitutions across the SARS-CoV-2 genome is presented in Figure 4.
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Studies of three-dimensional (3D) structures of proteins can be an exceptionally informa-
tive approach to infer their functions. For SARS-CoV-2, the most frequently analyzed protein
is spike, although some other proteins have been investigated in this regard too [37–41]. An
example of a successful study using the 3D approach is an analysis of ORF8, which is a
rapidly evolving accessory protein thought to interfere with immune responses [37–41].
The 3D structure of SARS-CoV-2 ORF8 was determined by X-ray crystallography. The
structure revealed a ∼60-residue core sequence homologous to SARS-CoV-2 ORF7a, with
an addition of two dimerization interfaces unique to SARS-CoV-2 ORF8 [37–41]. The pres-
ence of these interfaces suggested that SARS-CoV-2 ORF8 is able to form unique protein
assemblies that are not possible for SARS-CoV ORF8. These assemblies are likely to mediate
unique immune suppression and evasion activities [37–41].

Analysis of nonsynonymous and synonymous substitutions is used to analyze the
modes of natural selection and trends in the evolution of protein-coding genes [42–44].
The Ka/Ks (the ratio of the rate of nonsynonymous nucleotide substitutions, which lead
to a change in the encoded amino acid, to the rate of synonymous ones) are commonly
used to distinguish between purifying and positive selection. Ka/Ks below one reflect
purifying selection, whereas Ka/Ks over one may indicate positive (Darwinian) selection.
Among synonymous substitutions, the four-fold degenerate sites (sites at the third position
on codons, where all three possible nucleotide mutations are synonymous) and non-
coding RNA regions are expected to be the best approximation of nearly neutral modes of
evolution [42–44].

Published sets of SARS-CoV-2 sequences, reconstructed phylogenetic trees, and pre-
dicted mutations are available from a variety of databases (Table 1). It should be noted
that these datasets are the results of computational studies and are not always supported
for long periods of time. For example, the CoV-GLUE database is not regularly updated,
at least not for deletions in SARS-CoV-2. The GESS database was last updated in March
2023. This is understandable considering the overwhelming amount of SARS-CoV-2 raw
sequences. We think that the next important step is to develop comprehensive datasets of
predicted mutations that will contain the information on putative recurrent mutations and
reversions exemplified by the recent databases UShER [34] and CoVigator [45]. This is an
extremely challenging task considering the major problems discussed above; however, the
absence a centralized database of predicted mutations is hindering further analysis of the
mechanisms of mutations and trends in the evolution of SARS-CoV-2.

Table 1. Frequently used online SARS-CoV-2 resources (all accessed on 23 January 2024).

Database Link

CDC strains https://www.cdc.gov/coronavirus/2019-ncov/variants
NCBI https://www.ncbi.nlm.nih.gov/activ

Nextstrain https://nextstrain.org/ncov/gisaid/global/6m
GISAID https://gisaid.org

SARS-CoV-2 mutation portal http://sarscov2-mutation-portal.urv.cat
CoV-GLUE https://cov-glue.cvr.gla.ac.uk

UShER https://genome.ucsc.edu/cgi-bin/hgPhyloPlace
GESS https://wan-bioinfo.shinyapps.io/GESS/

CoVigator https://github.com/TRON-bioinformatics/covigator

2.3. Molecular Mechanisms of Mutations

SARS-CoV-2 has accumulated many mutations during the several years of the pan-
demic [36]. Mutations leading to amino acid substitutions constitute the primary raw mate-
rial for genetic variation; however, many insertions, deletions, and recombination events
are likely to be critical elements in the macro- and microevolution of coronavirus [30,46,47].
Understanding the molecular mechanisms of mutations is important in itself, but it is also
essential for understanding the role of mutation hotspots and uncovering the pathways of
their appearance. For example, an increased frequency of deletions in the genes encoding

https://www.cdc.gov/coronavirus/2019-ncov/variants
https://www.ncbi.nlm.nih.gov/activ
https://nextstrain.org/ncov/gisaid/global/6m
https://gisaid.org
http://sarscov2-mutation-portal.urv.cat
https://cov-glue.cvr.gla.ac.uk
https://genome.ucsc.edu/cgi-bin/hgPhyloPlace
https://wan-bioinfo.shinyapps.io/GESS/
https://github.com/TRON-bioinformatics/covigator
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the ORF6-ORF7a-ORF7b-ORF8 (Figure 1) complex of accessory proteins in SARS-CoV-2 is
likely due to the fact that these genes evolve under the forces of natural selection [30,47,48].

Mutational changes in DNA/RNA molecules are classified into point mutations and
large-scale recombination events. Point mutations are substitutions, deletions, and insertions.
An additional class is rare complex mutations, which are various combinations of the types
of mutations mentioned above. It is generally accepted that point mutations represent a
mutation process; for example, errors of RNA replication or RNA repair. However, there is
no clear-cut border between these classes of events, as, for example, gene conversion between
partially homologous sequences may also result in point mutations [3,49]. Mutational
hotspots are frequently associated with the context of the surrounding sequences, such
as RNA secondary structure, presence of homonucleotide sequences, direct and inverted
repeats, minisatellites, short mutable motifs, and other DNA sequence features.

2.3.1. Deletions

Repeated RNA/DNA sequences are prone to various RNA/DNA rearrangements. The
removal of one or both copies of repeated sequences is the result of so-called illegitimate
recombination. These rearrangements depend on the close proximity of the repeated
sequences and can occur between direct repeats ranging from several to hundreds of
nucleotides [50–52]. We have to mention that all these studies on DNA have been conducted
in bacteria. It has been proposed that these non-recombinational rearrangements may occur
via a template dislocation (Figure 5a) or a template switch misalignment (Figure 5b) of
the repeated sequences during RNA replication. The importance of deletions at repeated
sequences is widely recognized because these events (for example, deletions/duplications
of trinucleotide repeat arrays) are responsible for many genetic diseases in humans [53].
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Figure 5. Molecular mechanisms of deletions in the SARS-CoV-2 genome. (a) Template dislocation
model for short deletions: one (or several) nucleotide deletions in short stretches of identical nu-
cleotides or polynucleotides. (b) Template switch model for long deletions: deletion between direct
repeats that includes removal of one repeat. Lowercase letters indicate deleted regions, direct repeats
are shown by arrows. Data are from [30]. Circles correspond to nucleotides, empty and filled circles
are used depending on the nature of repetitive sequences.

Short deletions are well-known to be associated with stretches of identical nucleotides
or tandemly arranged di- and tri-nucleotides (low-complexity regions, Figure 5a). This
tendency was also documented for single-nucleotide deletions in the SARS-CoV-2 genome.
For example, the numbers of deletions in stretches of two identical nucleotides are similar
to those of deletions in stretches of three and four identical nucleotides, although the
observed numbers of identical stretches in the SARS-CoV-2 genome are dramatically
different. This strongly indicates that many short deletions are the results of so-called
template dislocation in stretches of identical nucleotides (Figure 5b), which likely emerged
from RNA polymerase errors [30]. An important feature of short deletions in SARS-CoV-2
is a substantial excess of these events in UTRs compared to the coding regions, implying
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that, to a large extent, deletions in coding regions are true deletion events rather than just
sequencing errors. It is quite likely that short deletions in stretches of identical nucleotides
may occur independently in different viral lineages. Some short deletions are supported by
anecdotal observations. For example, the UUA deletion (Figure 5a) is one of the mutation
signatures of the highly infectious B.1.1.7 lineage that accounted for many COVID-19
cases [54].

Long deletions are less likely to emerge independently many times. Many long
deletions are flanked by short direct repeats with zero or one–two mismatches, suggesting
template switching (a variant of illegitimate recombination) as the main mechanism of
deletions [30]. A more complex scenario of the interplay between deletions and insertions
simulated by inverted repeats in single stranded RNA has been recently proposed for
several SARS-CoV-2 genes [55]. Indeed, the hairpins formed by inverted repeats have long
been known to be associated with deletions and elevated intra- and inter-chromosomal
recombination [56,57].

2.3.2. Insertions

Similar to deletions, short insertions also tend to be associated with stretches of iden-
tical nucleotides or tandemly arranged di- and tri-nucleotides [28]. They were strongly
enriched in Us and, in most cases, emerged independently (as judged by phylogenetic
inferences). It is most parsimonious to suggest that these insertions resulted from RNA-
dependent RNA polymerase (RdRp) slippage on short runs of A or U (Figure 6a). In
contrast, the composition of the long insertions (Figure 6b) was close to that of the SARS-
CoV-2 genome, and many of these insertions were found to be monophyletic; that is, these
appear to be rare events that did not occur on nucleotide runs. It should be noted that
many long insertions have been manually created, in some cases using long-read nanopore
sequencing. Sequence analysis of the SARS-CoV-2 genomes indicates that these inser-
tions occur either through polymerase slippage resulting in tandem duplication or, more
commonly, illegitimate template switching (Figure 6c) associated with the formation of sgR-
NAs [28]. In support of the latter hypothesis, template switching in different RNA viruses
(including coronaviruses) has been demonstrated previously in a variety of experimental
settings. For approximately one third of the long insertions, the authors were not able to
pinpoint the source of the inserted sequence. One possible explanation is a mutational
deterioration between the source and the inserted sequences, especially for relatively short
insertions, but another unknown mechanism of illegitimate recombination cannot be ruled
out [28].

2.3.3. Substitutions

Transitions (C<->T(U) and A<->G mutations) tend to be overrepresented in the spectra
of spontaneous mutations (so-called transition bias) [58] and favored over transversions
(C<->A, C<->G, T(U)<->A, T(U)<->G) [59,60]. Transition bias has been clearly recognized
as a general property of DNA/RNA-sequence evolution, having been observed in all types
of genomes in prokaryotes, eukaryotes, and viruses [61–64].

For SARS-CoV-2, a large proportion of the substitutions are likely to be caused by the
RdRp transcription errors incorporated during replication. These mutations are expected to
be approximately symmetrical (for example, C>U and G>A mutations should have similar
frequencies [36]). In other words, a tendency to mis-incorporate a U instead of a C would,
therefore, be reflected in a parallel number of G>A mutations occurring on the minus strand.
However, the frequency of G>A mutations in the SARS-CoV-2 genome was substantially
lower than that of C>U, and generally comparable to the transitions of A>G and U>C
(Figure 3) [65]. It has been proposed that an excess of C>U mutations in SARS-CoV-2 is
caused by the activity of the host APOBEC (cytosine deaminases) family of RNA editing
enzymes [29,36,66]. Indeed, the APOBECs deaminate C to U in single-stranded nucleic
acids and function in a variety of biological processes, including innate and adaptive
immune responses to viral pathogens [67]. Members of the APOBEC3 family are reported
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to be involved in the control of DNA and RNA viruses [68]. While most APOBECs use
single-stranded DNA (ssDNA) as a substrate for cytosine deamination, three APOBECs
(APOBEC1, APOBEC3A, and APOBEC3G) deaminate certain cellular single-stranded RNA
(ssRNA) targets [69]. Experimental data suggest that APOBEC3A is likely be involved in
C>U mutagenesis in SARS-CoV-2 [70]. As for the A>G transitions, they can be caused by
the action of ADAR (Adenosine Deaminase Acting on RNA) RNA editing enzymes [71],
although no obvious excess of A>G and U>C mutations was detected in the mutational
spectra of SARS-CoV-2 (Figure 3).
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Another unusual property of the SARS-CoV-2 genome is an apparent excess of G>U
transversions (Figure 3) [29,72]. One possible explanation for these data is the unusual proper-
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ties of the SARS-CoV-2 replication machinery. However, this would be an exceptionally rare
evolutionary phenomenon—just the second of its kind along with an exonuclease-deficient
four-subunit DNA polymerase epsilon complex of Saccharomyces cerevisiae [73]. Another possi-
ble explanation is oxidative mutagenesis generating 8-oxoG in viral RNA [74–76]. Replication
of 8-oxoG with the insertion of A would be manifested as a G>U mutation in the strand where
8-oxoG was present [29]. Distribution analysis of G>U and C>U mutations across the SARS-
CoV-2 genome suggests that distributions are not Gaussian, with elevated frequencies at
the 3′ and 5′ ends of the alignment, respectively (Figure 4). Thus, the mechanisms of C>U
and G>U mutations are likely to be different.

2.4. Natural Selection of Mutations

The nucleic acids of rapidly evolving pathogens are subject to the strongest evolu-
tionary forces that have been reported in evolutionary biology [77]. A good example
of this is the evolution of the antigenic variation of African trypanosomes with variant
surface glycoprotein genes, which are under selection pressure in adapting to their hosts’
defenses [78,79]. Viruses too frequently undergo adaptive changes at genomic sites that are
targeted by immune responses [80–82]. However, many mutations experience dramatic
changes in frequencies across the whole viral population in a matter of months or even
weeks [83]. Although most mutations are effectively neutral, or even negatively affect
viral fitness, a small number of them emerge and spread in viral populations, suggesting a
positive effect on viral fitness and adaptive evolution [9].

2.4.1. Selection of Deletions and Insertions

Analysis of in-frame and out-of-frame deletions and insertions detected a significant
excess of in-frame mutations [36]. In-frame deletions are expected to have lesser functional
consequences compared to out-of-frame deletions. Single nucleotide deletions are relatively
frequent, with a substantial fraction of them occurring in ORF6, ORF7a, ORF7b, and ORF8
genes (Figure 1) [30]. The indels are likely to affect the antigenic properties of SARS-CoV-
2. For example, a 382-nucleotide deletion in the ORF8 found in several genotypes was
correlated with a milder infectivity [48]. Recent evidence has established the presence of
recurrent deletion regions that map to the defined antibody epitopes. As such, recurrent
deletions in the N-terminal domain of the S glycoprotein can alter the defined antibody
epitopes during long-term infections of immunocompromised patients [11]. Insertions
are also unevenly distributed along the SARS-CoV-2 genome. For instance, all seven
insertions in the spike glycoprotein localize to its N-terminal domain (NTD) [28]. This
domain attracts much of researchers’ attention now because it has been shown to harbor
multiple substitutions associated with SARS-CoV-2 variants of concern and those detected
in immunocompromised individuals with long COVID-19 [84–86].

All high-confidence insertions in the spike glycoprotein mentioned above have been
located on the protein’s surface, with three of them overlapping with the recently described
antibody epitope [87], making them potentially involved in the virus’s immune escape
(Figure 7). An important feature of short and long indels in SARS-CoV-2 is their substantial
excess of UTRs compared to coding regions [30]. It has been hypothesized that the increased
frequency of indels, their non-random distribution, and their independent co-occurrence in
several lineages, are the potential mechanisms of viral responses to the elevated immunity
of the global population [30,36].
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2.4.2. Selection of Substitutions

The evolution of SARS-CoV-2 during the pandemic was primarily driven by purifying
selection (0.1 < Ka/Ks < 0.5), but a small set of sites (such as the receptor-binding domain
(RBD) on the spike protein and the region of the nucleocapsid protein determining nuclear
localization) appear to evolve under positive selection [9,88]. The most highly constrained
sequences corresponded to some NSPs and the M protein. Conversely, genes encoding
NSP1 and accessory ORFs (Figure 1), particularly ORF8, had substantial proportions of
codons evolving under conditions of very weak purifying (close to neutral) selection [88].
The six bona fide positively selected sites were located on the N protein, ORF8, and NSP1.
A signal of positive selection was also detected in the RBD of the S protein, but it most
likely resulted from a recombination event that involved the BatCoV RaTG13 sequence [88].
In line with previous data, it was suggested that the common ancestor of SARS-CoV-2
and BatCoV RaTG13 encoded/encodes an RBD similar to that of SARS-CoV-2 and some
pangolin viruses [88].

2.5. Interplay between Mutations and Selection

Successful transmission to new hosts requires numerous adaptive changes, such as
receptor specificity adjustment in the coronavirus itself or to the longer-term evolutionary
arms race with the host’s antiviral defense system [89,90]. Initial escape mutations almost
invariably carry a fitness cost but are frequently compensated for by subsequent fitness-
restoring mutations [9,38,91]. A sizable fraction of amino acid substitutions appears to be
fixed by positive selection, but it is unclear to what degree long-term protein evolution
is constrained by epistasis; that is, instances when substitutions that are accepted in one
genotype are deleterious in another [92].

For SARS-CoV-2, it has been suggested that a small set of sites evolves under positive
selection. These sites form a strongly connected network of apparent epistatic interactions
and are signatures of major clades in the SARS-CoV-2 phylogeny. Multiple mutations, some
of which have since been demonstrated to enable antibody evasion, began to emerge in
association with ongoing regional diversification, indicating the emergence of new SARS-
CoV-2 strains [9]. Another interesting example is the numerous nonsynonymous mutations
acquired in the Omicron lineage before it became the most frequent variant of SARS-
CoV-2 [38,93]. Relative to the original Wuhan-Hu-1 strain, this variant has approximately
37 mutations in the spike protein that is responsible for binding and entry into host
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cells. Fifteen of them are in the RBD that binds to the host’s angiotensin-converting
enzyme 2 (ACE2) receptor and serves as a target for many neutralizing antibodies. This
structure of the spike protein when bound to human ACE2 provides a rationale for the
observed evasion of antibodies elicited by previous vaccinations or infections and shows
how mutations that weaken ACE2 binding are compensated for by mutations that enable
new interactions [40,41]. All these results indicate that the evolution of the Omicron spike
protein is driven to a large extent by epistatic interactions.

There is also an apparent link between a particular deletion and natural selection in the
SARS-CoV genome. Among the most dramatic genomic changes observed in SARS-CoV
isolated from patients during the peak of the pandemic in 2003 was the acquisition of a
characteristic 29-nucleotide deletion in ORF8 causing its split into two smaller ORFs, ORF8a
and ORF8b (Figure 1) [94]. Functional consequences of this event were not entirely clear,
but recent evolutionary analyses of ORF8a and ORF8b genes suggested that they are under
purifying selection, thus proteins translated from these ORFs are likely to be functionally
important [31].

2.6. A Puzzle: Insertion and Recurrent Deletions of the -PRRA- Sequence

In its early evolution, the SARS-CoV-2 spike glycoprotein acquired a new four amino
acid -PRRA- insertion at positions 681–684 (encoded by -CCU CGG CGG GCA- at the
RNA level) (Figure 8) [95,96]. This sequence is absent from all other known bCoV lineages,
such as SARS-CoV and MERS-CoV [95,96]. It formed a novel furin cleavage site in the S
protein [97]. This is significant because furin protease is abundant in the respiratory tract
and found throughout the body. It is also “employed” by other RNA viruses, including
HIV, influenza, dengue, and Ebola virus, to enter the cell. Conversely, the proteases
typically used by SARS-CoV are much less abundant and widespread, and not as effective.
Although the virus probably gained the insertion through an as yet unknown illegitimate
recombination event, this particular furin site sequence has never been found in any
other coronavirus from any other species [98]. The functional consequences of the -PRRA-
insertion at the RNA level (Figure 8) are not well understood. However, the translation
of viral RNA depends on various factors. It has been suggested that this insertion may
have a cumulative effect by providing both furin cleavage and translation pausing sites,
allowing the virus to infect its new host (humans) more readily [98]. This underlines the
importance of ribosome pausing for the efficient regulation of protein translation and, also,
of co-translational subdomain folding, as suggested by experimental studies [98].
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terisks indicate mismatches between SARS-CoV-2 and RaTG13. Letters above NC_045512 correspond
to encoded amino acids.

The initial -PRRA- has subsequently transformed into the -HRRA- or -LRRA- se-
quence [99]. The functional consequences of these mutations are not entirely clear. It is
parsimonious to suggest that the -HRRA- variant impacts the infectivity, pathogenesis, and
transmissibility of the virus [40,99,100]. The dynamics of the normalized Shannon entropy
of the first position of -PRRA- appear dramatic; virtually no variability was detected for the
July–October 2020 and July–October 2022 periods, whereas a substantial increase followed
by a dramatic decrease of variability was documented between November 2020 and June
2022 (Figure 9). The last three positions of the -PRRA- sequence did not vary.
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Notably, a deletion of the furin recognition site and neighboring regions on the spike
gene has been detected in a substantial fraction of sub-genomic viral RNAs [101]. Deep
sequencing and ribosomal profiling data showed that the fraction of this genomic deletion
was small (~2%) in the early stages of viral infection. However, this fraction is likely to
increase in the late stages of infection, diminishing its potential role in the S protein’s
expression [20]. The functional consequences of this “reversion” to the ancestral state
are not clear and certainly warrant further studies, as it may reflect on one of the key
mechanisms of successful reproduction of SARS-CoV-2 in human cells.

3. Discussion

Various approaches have been developed to infer mutations in the SARS-CoV-2
genome. However, the field would definitely benefit from a centralized database of mu-
tations, which must be updated on a regular basis. This will make it easier to find and
correct the shortcomings of various approaches and improve the quality of the dataset in a
systematic way. For example, recurring biases in tree reconstructions may create substantial
problems in downstream analysis [32,33]. This becomes especially important when consid-
ering the controversial and contradictory results that can be found in the literature. For
example, a study from 2020 documented a substantial excess of A>G and U>C mutations
in eight patients, reporting that the fraction of C>U mutations was smaller in comparison
and detecting no excess of G>U [102]. These observations (made on a small number of
samples) contradict later studies, although one must bear in mind that subsequent studies
reported on data collected in the later stages of pandemics [7,65].

The role and impact of APOBECs and ADARs in inducing a high rate of C>U mutations
is not entirely clear. There is experimental evidence that supports this hypothesis [70],
making computational predictions more credible. Another challenge is to understand the
mechanisms of G>U mutations. Whether they are driven by oxidative damage generating
8-oxoG in viral RNA [29,76], or a different mechanism [7], remains to be investigated. This
is important in light of a recent observation of changes in G>U transversion frequency over
time (the relative rate of these mutations in the Omicron variant is about two times lower
than in early clades of SARS-CoV-2 [7]).

We believe that any computational prediction must be thoroughly validated experi-
mentally. However, this is not as straightforward as it appears because of the extremely
high transmissibility of SARS-CoV-2. In vitro experiments with RdRp can help to estimate
the error rates and understand the context specificities of mutations. Similar experiments
can be informative when combined with computational studies. For example, a com-
putational RNA context analysis suggested that APOBECs can play a prominent role in
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SARS-CoV-2 mutagenesis. This prediction was tested in cell culture, which confirmed
that APOBEC1, APOBEC3A, and APOBEC3G can edit the specific sites of SARS-CoV-2
RNA which cause C>U mutations during viral RNA replication. Interestingly, SARS-CoV-2
replication and progeny production in Caco-2 cells were not inhibited by overexpression of
these APOBECs. Instead, overexpression of APOBEC3A promoted viral replication and
propagation, implying that APOBEC-mediated mutations are likely to cause changes in
fitness and potentially influence the evolution of SARS-CoV-2 [70]. Another example of a
successful combination of computation predictions and experimental studies is an investi-
gation of deletions in the ORF7a gene. Several ORF7a deletions of different sizes (190, 339,
and 365 nt) have been identified in COVID-19-positive patients with mild symptoms. Com-
putational analyses suggested that the deletions impair ORF7a function. While isolated
viruses with deleted ORF7a can replicate similarly to the wild-type viruses in vitro, they
produce fewer infectious particles [103]. These findings contribute to our understanding of
SARS-CoV-2 replication and immune evasion, as well as providing insights into the role of
ORF7a in virus–host interactions. These results are consistent with the recent observation
that ORF7a is a hotspot of long deletions in the SARS-CoV-2 genome [30].

Studying the dynamics of mutations in various groups of COVID-19 patients is another
promising avenue of research. Analyses of SARS-CoV-2 microevolution in immunocompro-
mised patients confirmed recurrent deletions in the N-terminal domain of the S glycoprotein
that are likely to alter defined antibody epitopes during long-term infections of these pa-
tients [11]. Further studies of SARS-CoV-2 genomic sequences in patients experiencing
different symptoms and clinical outcomes will provide additional information to increase
our understanding of the mechanisms of mutations and the role of natural selection in
viral evolution. The analysis of different geographical locations and populations can also
provide new information about the properties of viral mutations. It has been found that
some samples from Africa have a significantly higher frequency of substitutions compared
to those from other geographical locations [104]. Furthermore, comparative analyses of the
virus in various human tissues can help us to understand trends of viral evolution. It is well-
known that ACE2 (angiotensin-converting enzyme 2) is the primary receptor that mediates
infections in human cells [105]. However, it has been suggested that SARS-CoV-2 infections
in several types of human cells are primarily mediated by LDLRs (low-density lipoprotein
receptors) [106,107]. Further experimental analyses of various strains of SARS-CoV-2 may
uncover the molecular mechanisms and dynamics of these crucial interactions.

Previous studies of SARS-CoV and MERS-CoV provided a significant amount of
information about various aspects of coronaviral evolution and functioning within host
species. Numerous interspecies transmission events were detected for both viruses [108];
however, SARS-CoV-2 studies brought many new observations. This is expected because
of an unprecedented joint effort among many scientists from all over the world. Although
the origin of the SARS-CoV-2 infection in humans remains unknown, infections have been
frequently reported in different animal species. At least fifteen species are known to have
been positive for the Delta variant and ten species have been documented as being infected
with two different types of viral variants, suggesting human-to-animal, animal-to-animal,
and animal-to-human transmission events [109]. Mutations play a crucial role in these
processes, as exemplified by the -PRRA- insertion.

In conclusion, computational and experimental studies of mutations are useful for
gaining a deep understanding of trends in mutagenesis and natural selection. Even small
changes in the structure of SARS-CoV-2 genes can substantially affect fitness and the
trajectories of viral evolution. Analyses of these trends echo those of cancer mutations in
humans and some other mammalian species. However, centralized databases of cancer
mutations and related information are updated on a regular basis, predicted mutational
signatures and mutable motifs are constantly refined, RNA/DNA contexts have been
specified for predictions and analyses of cancer driver mutations, and many individual
mutational signatures have been studied experimentally [5]. We are confident that further
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computational and functional analyses of mutations in SARS-CoV-2 genomes will be able
to draw on similar resources in the near future.
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